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In [l] Van J2yke a plied 
g 

the methoa of “outer” and “inner” expansions in 
powers of E = fi- ta the problem of finding the unseparated lam2nar flow 
of a viscous incompresrsibfe fluid at high Reynolds number R past a semi- 
infinite body, and investigated in detail the first two term% of those expan- 
slons. In the present work we consider term% of higher order. In the exam- 
ple% of flow in a dlffusor near the stagnation point, and %o on, it is shown 
that the “outer” solution for such a problem consists of a part that 1% repre- 
sented by an asymptotic power series in E and a part that is not repre- 
sented by a series of that sort (it is Q (e-‘~‘), P > 0). fn the example of 
flow in a diffuser, for Which there is an exact sofutlon, it is found that the 
basic part of the solution, represented by a power series 1% E can be 
found.in the usual way 2ndependently of the “exponential part”, Which can 
then be found by a perturbation method. 
the “outer” and “Inner” 

A method is proposed for joining 
solutions that is applicable to the problem of flow 

past a body at high A I 

1. We consider convergent laminar flow of a ~l%oous incomuressible fluid 
with constant coefficient of kinematic vi%- 
cositq v 8t hQh Reynolds ft in a plane 
diffuser using a system of polar eoordlnates 
r, 8 (see F1g.l). 

Wr denote the half-%ngle of the diffuser 
by +a > and the velocity components In the 
dlrections of increasing r and 8 by u and u, 
respectively. lt:tis well known (see, for exam- 

constant with dimensions .&a2’f-1, and the 
dimensionless function U(8) satisfies mua- 
tion 

primes indicate differentiation with respect to 8 

The boundary conditions for U are 
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U (* l&a) = 0 Or U (I& a) = 0, U’ (0) = 0 if.21 

We will solve the problem by finding Z(e) with the method of “outer“ and 
“inner” expansions, Outside the boundary layer U _ f 1 as 
evident form Equation (1.1); we consider converging flow, u +‘--*I’. 

as is 

We seek the outer solution In the form 

U = CT, + 0 (P) = -1 + Es use + e’U,, + ‘ * . + 0 fErnI 

(m is an arbitrary positive integer) 

(1 3) 

Substituting (1.3) Into (1.1) and equating like powers of E , we see 
that all I/or= const ; therefore setting &’ = 0 we find from (1.1) 

Usz-/-4saU~-~ 30, or Us= -- v/1+4s4-22t;s= -_1-3ss-23~4+ . . . (1.4) 

We seek an ltinner’* solution in the boundary layer cf the form 

U = Us (6) +- &Is (8) + &%a (6) + . . . (6 == pjza - e) 0) (1 .sj 

We transform (1.1) to the variable 6. d2tJ / d62 -/- iJ2 --- i f 4$1/ = 0 . 
and substituting (1.5) and equating coefficients of like power: of E we obtain 

&, i de2 -f- u$ - 1 == 0, d%, / d@ + 2~~ (a2 -1. 2) = 0 etc. (1 .Gf 

The bpundarg cond$tions,,of no slip at the wall and the conditions of Join- 
ing the Inner and outer solutions are, according to (1.4), 

as (0) = 0, 240 (30) = -1; a2 (0) - 0, ue(~) = -2 etc. (1.7) 

The function us(@) Is found from (1.6) and (1.7) fn closed form as 

Us (6) = -1 $12 rtv’,?-+ jf/zi e”*v’ze + (U’S- 1/2) e+ +=]-2 (I .S) 

(This Is a known solution In boundary-layer theory). 

The function us (6) is determined uniquely by (1.6) and (1.7) as 

We now find U from the “inner” solution 
(1.5), (1.8) and (1.9) we obtain 

12 

for f?-+oQ (I.91 

for large 6. From (1.4), 

esp (- I/Z@ + . . . = 

Equation (1.10) clearly shows that there should be present in the “outerll 
solution exponential terms that are not represented by an asymptotic series 
in powers of E . We find the dominant one by a perturbation method. We 
seek an outer solution in the form U = V,+ ff,. After substituting I, into 
(1.1) we obtain 

ss (U,” i- 4U,f + 2U,U, + Uls = 0 (l.li) 

Discarding U!” In (1.11) and solving the resulting equation, we obtain 
the leading term of U, in the form 



tUghQX- SplU-Orirtlons in the bwndary-1SyQr thhory 677 

cf, = c {exp [(a - VP 4 ?zk-l@ t 4s4PI C exp I- @ f ‘/*a) $fF s-1 (i -f- 484)‘fq) = 
= c exp f- fVs Q - 3) fzs-' (1 f 489*4 ff + SXp &- ~8” rhfi + &+)%]] 

(c = 12 (v’s-+ JGj-2, (1.12) 
We find the constant by equating the leading term of U - V, from (1.10) 

$;ke;;e leading term of U, according to (1.12). Finally we write the 
solution in the form 

(The dots indicate terms of higher order in e than those shown). As a 
check of (L.13) we equate Uz as given by (1.12 
the exact solution on the axis of the diffueor t 

with the 0, obtained from 
at 

ui 
t 
0) = v,*, 

9 = O), If we set 

a/2) 
integrating (1.11) and satisfyfng the boundary conditions 

v, = - 
equation 

&, (the condition of no slip} and y'(O) = 0, we obtain the exact 

From (1.12) we obtain 

24 
VI* = (v'$ + &=P 

~2.41 exp 
[ 
-* (1 f 4@]+ * ” . (1%) 

Taking the expression in square brackets out from under the radical. in 
the denominator of the integral in (X.14) and expanding the remaining expres- 
sion in a series In powers of 

-'Is (1 + 4a4)-'/* 
u1 *s - 2s 
u,*s - 78 

we obtain after integration: 

keeping one term in the series 

U,* ~5 2exp 
t 
-* (I + 4e4ffj + . % . 

keeping two terms 

Comparing (1.15) and (1.16) we are convinced of their identIty. @he 
numerical coefficients preceding the exponent should agree If all terms of 
the above-mentioned series were considered). 

From this example the following conclusions can be drawn. The outer solu- 
tion consists of two components: a part represented by an asymptotic series 
in powers of E , and a part.not represented in that form. The basic wpower 
partR of the solution can be obta%ned by the method of "inner" and "outerw 
expansions, operating as If the "exponential part" dPd* not ex.%st, after which 
that part of the solutZon can be found by a perturbation method. 
sence of an "exponential partR 

The pre- 
of the solution is a general feature of solu- 

tions of the Navler-Stokes equations. This property can be observed in the 
examples of flow near a stagnation point of the flow, near a plate, in the 
problem of diffusion of a vortex, In the one-dimensional problem of a shock 
wave in th+z case of a perfect gas with constant transport coefficients, and 
so on. 
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2. Consider, for example, the problem of flow of a viscous fluid in the 
vicinity of a stagnation point In the plane or axlsymmetric case [I]. Van 
Dyke El] uses the conventional coordinate system employed in boundary-layer 
theory: n Is the normal distance from the surface to the point under con- 
sideration, and s the distance from that normal to the stagnation point 
along the arc of the contour. 

The “outer” and 
in the form I: 11 

‘Inner” expansibns for the stream function $ aYe taken 

*- y, (s, 4 + EY2 b-9 4 -i- - * -, e _ R-% 

Here A is the Reynolds number formed with the radius of curvature of 
the nose of the body. 

$- ~$1 (s, iv) f E2& (s, N) -;- . , ., iV :m= n&-l 

In the vicinity of the stagnation point in the axisymmetric case 

$1 (8, N) =z (l/z U,J”’ 9 If (q) i- 0 W)], 11 L= (2U,,)‘l.N 

(2.1) 

(2.2) 

where IY,~ is determined by the series expansion for the velocity (I, of an 
ideal fluid on the contour 

0’l (s, 0) =Y LT,rs $- 0 (3”) 
In the plane case 

O1 (s, N = U1ll’z s II (1)) i- 0 (s)l, q L z L;,;/z ij, (2.3) 

The equation satisfied by y is 

Y’ + ff” = p (f’2 - I), f (0) =: j’ (0) :: 0, f’ (co) = : 1 (2.4) 

Here R = 1 for plane flow and S = 4 for the axisymmetric case. (Primes 
Indicate differentiation with respect to n ). 

We Investigate the behavior of y for large n . It is established by 
numerical Integration [l] that 6-n-8 for large n (where f~, = 0.80455 for 
the axlsymmetrlc and 6 = 0.6479 0 for the planecase). We represent yin the 
form 

f=~--~BIi-cP (rp (00) - cp’ (00) =; 0) (2.5) 

We determine the principal term in v for q - m . We put (2.4) into 
the form [ 11 

(1 -I- P) I’” 2 (f” -I- ff’ i- 84 
Substituting (2.5), we obtain 

(1 -i_ p, (2rp’ -j- (F’2) == [rp” -t- f$J -I- (“rl - P&’ -t- WI (2.6) 

To determine the principal term in cp we naturally neglect in (2.6) small 
quantities compared with the remaining terms 

2 (1 -I- p) cp’ .-~ [cp” i- q -I- (q -^ PJT’I’ 

Hence, after a single integration, we have 

cp” -! (n - 3,) cp’ -. (1 -:- 23) (p =- c 

The constant c = 0, because it corresponds to the particular solution 

;e=3-;/y + 281, which does not tend to zero as q - - . Setting n--R1 =:, 

cp” _j_ &$ - ,np, _- 0, m =- 1 + 2p (2.7) 

Since m = 2 and 3, respectively for the axlsymmetric and plane cases, 
one solution cp, of (2.7) is expressed in terms of the Chebyshev-Hermite 
polynomial 



A second linearly Independent solution qa cf (2.7) is determined by 
Equation 

Hence, Integrating by 
for (p2 as 5 _ m 

(PI_ f-9 e-'l*S', 

From (2.8) and (3.9) 

a, 

cp,=rp, exp-tadt s 
E 

2 cpl" 

parts, It Is easy to find the asymptotic formula 

m = 2; (Pz- 
5-4 S-‘/r 4’ 

, m=3 (2.9) 

cp - cs- w+l) e-'/ 4' (2.10) 

(where the constant o depends upon m ). From (2.5) and (2.10) we obtain 

f = E + cE-(m+l) ,-%Ei+ . . . (2.11) 

(The dots Indicate terms nf higher order for < + m). We recall that 

so that for large N In the conversion to the variables 
"outer" 

and a of the 
expansion It follows from (2.1), (2.2) (2.3) and lf2.11) that the 

"outer" solution contains an "exponential part'. 

3. 
'lnnerM 

In the work of Van Dyke [1] the first two terms of the 'outern and 
expansions were joined by using a general method of joining asympto- 

tic expansions proposed by Lagerstrom [3]. We use below a method of joining 
these expansions that arises from physical considerations for the problem 
under consideration. We are henceforth Interested only.ln the nPOWer part" 
of the solution, and use the notation of [l]. The 'outer' expansion for the 
component u In the direction of Increasing n Is taken In the form 

v(s, n, R) - VI (~,n) + eVz (s, n) + e2Vs (s, n) f..., e = H-"~ (3.1) 

(A Is the Reynolds number) 

The other quantities are represented analogously. Upon substituting these 
expansions Into the Navler-Stokes equations and the continuity equation, and 
equating the coefficients of like powers of c , one obtains a system of 
equations for the coefficients of the expansions that have the type of the 
Euler equations. The viscous terms In these equations are known functions 
of the coefficients with smaller Indices, and canbe treated as mass forces 
In the Fiuler e uatlons. For this reason In determining the coefficients in 
the expansion ? 3.1) 
for TL + 0 . 

It Is necessary to know only the behavior of the Vt(s,n) 
The expansion (3.1) Is valid outside the boundary layer, but 

each term of such an expansion can be continued analytically to the surface 
of the body, n = 0 , 
condition for It. 

and here It Is necessary to substitute a corresponding 
We turn to the tllnner" expansion; it Is taken In the form 

u (s, n, n) - svl (s, N) + E2V3 (S, i-v) + E3V3 (S, N) + . . ., N = ne-1 (3.2) 

The other quantities are represented analogously. We assume that the 
regions of validity of (3.1) and (3.2) overlap 

all terms of (3.2) are of the same order, 
, For large N but small 

n and It Is necessary to 
regroup them, transforming to the variables 
tial ter.ns after which the expansion (3.1) s%u?d 
slons (3.lj and (3.21 represent one and the same solution). 
coefficients of the outer" expansion are obtained from equations of Euler 
type, there Is no reason to sup ose that v,(a,n) - m, as n - 0 ; conse- 
quently one expects for ur(S,N P as N-m the behavior 

ok (S, N) - a&s (S) Nk + akl (S)N"-' + . . . + akk b) + bxpl (3.3) 
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Here [exp] stands for exponential terms. This sort of behavior of the 
u,(s,N) is confirmed by consideration of the first two terms of ( 
by Van 
and (3. 

ke Cll. For large N but small n we obtain from (3.2 

v (s, n, R) - 2 ekv, (s, N) 
k=l 

- 5 ek i: akl Nk-’ -zl i. akpkwlel - 5 alon + 
k=l l=O I=1 

(3.4) 

It follows from (3.4) that as n .+ 0 

v, (s, n) ---, 0, V, (s, n) -9 a r-l, r-1 ts) (3.5) 

reproduce the matching conditions on the solution for N - = ; see [l]). 
Then cp (s) is found from ( .3) and the third term in (3.1) is dete?mlned, 
whereupon the third term in 
clents of the alnner” 

3.2) is determined, and so on. For the coeffl- 
expansion It la necessary to display as many conditions 

for N + 0~ as are needed for their uniquf! determination; for the pressure 
p and the component u in the direction of Increasing e , these’condltions 
are obtained from the “outer” expansion for small n after transformation 
from n to P . We find, for example, the conditions for u , The “outer_* 
expanslon for u has the form 

u (s, n, R) - U1 (s, n) + eUI (s, n) + eaU, (s, n) + . . . (3.6) 

Because 

for n =0 

we obtain from (3.6), upon transforming from n t0 N=ne" 

u (3, n, RI - 5 - _ u r+l, l (4 ertlN1 - 
r=v I-==” t=o 

w go ek $, Ur+l, k-r (s) Nk-’ - Eoekuk+l tsp N) 

From (3.7) we obtain for N - = 

++I b, N) - i urtls k-r b) Nk-’ 
r=o 

In particular, it follows from (3.8) that for N - 0~ 

UL b, NJ = U,, (4, ua b, N) - U,I (4 N + Uzo (4 

~3 b, N) - UIZ (4 N* + U,I (4 IV + Urn (4 etc. 

(3.7) 

(3.8) 

Analogous results hold for the pressure p . 

The foregoing is confirmed by consideration of the first two terms of the 
“Inner” expansions obtained by Van Dyke [ 1). 

We remark In conclusion that the ‘exponential” terms will play a role In 



the Investigation of flow at moderate Reynolds number, which turns out to be 
of the order of 10 for the flat plate [4]. 

The author thanks S.V. Fal'kovich for discussion of the questions con- 
sidered. 
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