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In [1] Van Dyke applied the methoa of "outer" and "inner" expansions in
powers of ¢ = F% to the probliem of finding the unseparated laminar flow

of a viscous incompressible fluid at high Reynolds number & past a semi~
infinlite body, and investigated in detail the first two terms of those expan-
sions. In the present work we conslder terms of higher order. In the exam-
ples of f%ow 1n'a diffusor near the stagnation point, and so on, 1t is shown
that the "outer" solution for such a problem consists of a part that is repre-
sented by &an asymptotic power series In ¢ , and a part that 1s not repre-
sented by a series of that sort (it 1s O (%), « > 0). In the example of
flow in a diffusor, for which there is an exact selution, it is found that the
basic part of the solution, represented by & power series in ¢ , can be
found.in the usual way independently of the "exponential part”, which can
then be found by a perturbation method. A method 1s proposed for Joining

the "outer" and "inner" golutlons that is applicable to the problem of flow
past a body at high & .

1. We consider convergent laminar flow of a viscous incompressible fluid
with constant coefficlent of kinematic vis-
cosity v &t high Reynolds R in & plane
dirffusor using a system of polar coordinates
r, 8 (see Fig.1).

We denote the half-angle of the diffusor
by %0 , and the velocity components in the
directions of increasing r» and § by y and v,
respectively. It is well known {(see, for exam-
ple, {23% that in this flow v =0 and
u = ry{g) . We express the funetion ¥{g)
in the form V{a) = 4u{s), where 4 1is &
constant with dimensions 7377, and the
dimensionless function {(s) satisfiles Equa-
tion

Jip

(U - 40) - U2 -1 =10
Fig, 1 e=R"T R=A]v 1.4}

Here A 1s the Reynolds number, and
primes indlcate differentiation with respéct to 8

The boundary conditlons for U are

675
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U(tlye) =0 or U(ha)=0, U (@) =0 1.2
We will solve tnhe problem by finding ¢{s) with the method of "outer” and

"inner" expansions. Outside the boundary layer [ - + 1 as ¢ - O , as is
evident form Equation (1.1); we conslder converging flow, J = — 1

We seek the outer solution in the form
U=Us+o (M =—14+eUyut+elp+...+0EM (1.3
{m 41s an arbitrary positive integer)

Substituting (1.3) into {1.1) and equating like powers of ¢ , we sce
that all {,, = const ; therefore setting ¢ = 0 we find from (1.1)

Ul +48Uo—1=0, or Up= — V1+ 4et — 22 = — 12224+ ... (1.4)
We seek an "inner" solution in the boundary layer cf the form
U=y + eus ) + etuy (8 + ... (0= (lha—0)e (1.5)

We transform (1.1) to the variable &,d2U /d82 -+ U2 1 + 42/ =0
and substituting (1.5) and equating coefficlents of like power: of ¢ we obtaln

BPug [ d0? + ul — 1 == 0, d?uy [ A8 4 21y {(uy - 2) = 0 ete. (1.6}

The bgundarx cond%tions"of no slip at the wall and the conditions of Join-
ing the "inner and "outer” solutions are, according to (1.4),

U (0) =0, uy(0) = —1; ug(0) =0, uy(o0)= —2 ete. (1.7
The function u,(®) 1s found from {1.6) and (1.7) in closed form as
u @) = 1 +12 (VT + VDAV 4 (VT yHeeVB (g

{This 1s a known solution in boundary-layer theory).
The function u, () 1s determined uniquely by (1.6) and (1.7) as

U (0) = =2+ 0B V) for §o00 (1.9)

We now find ¢ from the "inner” sclution for large @. From (1.4},
{1.5), (1.8) and (1.9) we obtain

rr — 2 1. ._.._....._J“?'— oty {on 9. —
U= —1— 28 +(V3.+VZ)“ exp(—V2H4...=

— 12 V2 e
= — 1 -+ 4et - 2% |- ——s—Fz o exX [“-——“(ﬁ——ﬁ)] L. =
Vitat = ey L e 2 K
12 - VZ/a

vt [ YR (S )] 10
[ (V3+V2)2 P‘_ e 2 T ( )
Equation (1.10) clearly shows that there should be present in the "outer”
solution exponential terms that are not represented by an asymptotic seriles

in powers of ¢ . We find the dominant one by a perturbation method. We
seek an outer solution in the form U = Uy+ U, . After substituting 7 Into

(1.1) we obtain
e (Un” + 4Uy) + 2UU, + U2 =0 (1.11)

Discarding U, in (1.11) and solving the resultfng equation, we obtain
the leading term of U, in the form
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Uy =c{exp [0 —30) VZe (1 + 49 + oxp [— (0 + Y,0) VZ 1 (4 + 4e8)iy =
=cexp [— (fya —8) V2 (1 + 491 {1 + oxp [~ aet VI (1 + 4e9'h))
=12(V3+ VD (1.12)

We find the constant by equating the leading term of U — U, from (1.10)
with the leuding term of U, according to (1.12). Finally we write the
"outer" solution in the form

— 12 —
= — V14 det — 22 4 Wit v &P [—8V2(1 + 4e9] x

X { 1 -+ exp [_ “—f—z— 1+ 434)‘/‘]}+ - (1.13)

{The dots indicate terms of higher order in ¢ than those shown). As &
check of {1.13) we equate ¥, as given by (1.12% with the ¥, obtained from
the exact solution on the axis of the diffusor {at § = 0}. If we set

7, {0} = 1,%, integrating {1.11) and satisfying the boundary conditions

7, Q/?) = - 7, (the condition of no slip) and U’(0) = O, we obtain the exact
equation
v dn o -
- == (U? = V1 4 4et + 2¢% (1.14
LSX. V’/a(”;*’ — ) (2 (1 4 4e9 2 (<2 — U *9) 2z 19
From {1.12} we obtain

24 s
U* Vop exp [—;% (1 +4e‘)/‘] oo

- 0E v
a 1
=~ 2.41 exp [—WE—- {1+ 48‘)"]+ ces (1.15)

Taking the expression in square brackets out from under the radicsl in
the denominator of the integral in {1.14) and expanding the remaining expres-
sion in a serles in powers of
1 4'4/_9521;:;51

—Ys(t+ 4e) s

we obtain after integration:
keeping one term in the series

a H
U = 2exp{—-——~——*e 734+ 43*)3‘] +...
keeping two terms

U* = 2.36 exp [— ;—;‘73 -+ 434)%] . (1.16)

Comparing (1.15) and {1.16) we are convinced of their identity. (The
numerical coefficlents preceding the exponent should agree if all terms of
the above~mentioned serlies were considered).

From this example the following conclusions can be drawn. The outer solu=-
tion consists of two components: a part represented by an asymptotic geries
in powers of ¢ , and a part not represented in that form. T&e basic "power
part” of the solution can be obtzlned by the method of "inner” and "outer’
expansions, operating as if the "exponential part” did not exist, after which
that part of the solutlon can be found by a perturbation method. The pre-
sence of an "exponential part” of the solution is a general feature of solu-
tions of the Naviler-Stokes equations, This property can be observed in the
examples of flow near a stagnation point of the flow, near a plate, in the
problem of diffusion of & vortex, in the one-dimensional problem of a shock
wave in the case of a perfect gas wlth constant transport coefficlents, and
so on.
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2. Consider, for example, the problem of flow of a viscous fluid in the
vieinity of a stagnation point in the plane or axisymmetric case [1]. Van
Dyke [1] uses the conventional coordinate system employed in boundary-layer

theory: n 1s the normal distance from the surface to the point under con-
nt

sideration, and s the distance from that normal to the stagna

along the arc of the contour.

The "outer"” and "inner" expansibns for the stream function § aYe taken
in the form [1]

Y~¥,(s,n) +e¥(s,n) ..., &= R 7

Here R 1s the Reynolds number formed with the radius of curvature of
the nose of the body.

P~eP (s, V) -+ &P, (s, V) - ..., N ==ne! (2.1)
In the vicinity of the stagnation point in the axisymmetric case
di (s, V) = (Y, Up)'™ s [f () + 0 (7], N = QUhN (2.2)

where U, 1s determined by the series expansion for the velocity @, of an
ideal fluid on the contour

Ui (s, 0) = Ups -+ 0 (s
In the plane case

Py (s, N) = Uy s 1f () 4- 0 (9)], N == UyhN 2.3)
The equatlon satisfied by s is
=B =1, f(0) == f (0) == 0, f (c0) ==1 (2.4)

Here B =1 for plane flow and B = g for the axisymmetric case. (Primes
indicate differentiation with respect to n ).

We investigate the behavior of sy for large n . It 1s established by
numerical integration [1] that g— —B, for large n (where 8 = 0.80455 for
the axisymmetric and g = 0,647900 for the plane case). We represent 7 in the

form
f=n—B ¢ (¢ (00) = ¢’ (00) == 0) (2.5)
We determine the principal term in ¢ for mn - « . We put (2.4) into
the form [1]
(- B) /2= (f + ff + B
Substituting (2.5), we obtain
(A -+ B) 2" 4 ¢ = @ + ¢ - — Ble + ¢} (2.6)

To determine the principal term in ¢ we naturally neglect in (2.6) small
quantities compared with the remaining terms

24P e = 9" 4+o4 (—B)e
Hence, after a single integration, we have
Q4 M—B)g — (1--23)¢=c

The constant ¢ = O, because 1t corresponds to the partlcular solution
@ = — /(1 + 28), which does not tend to zero as n - = . Setting n-p, =%,

we have - -
@" -~ L@’ — m@ =0, m=-1-4+28 2.7)

Since m = 2 and 3, respectively for the axisymmetric and plane cases,
one solution ¢, of (2.7) is expressed in terms of the Chebyshev-Hermite
polynomial

o= H, (—-—_:) , = 1B, m=2 ¢ =8 —3, m=3 (28)
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A second linearly independent solution ¢, cf (2.7) 1s determined by

Equation 00

P2 =0 S exp
g

Hence, integrating by parts, 1t is easy to find the asymptotic formula
for o, as g = =

— 12 dt
2 @

P~ L3 =2 o~ E4e AR =3 2.9
From (2.8) and (2.9)
@ ~ k(MDY B (2.10)
(where the constant o depends upon m ). From (2.5) and (2.10) we obtain
=4 cE U E L @.11)

(The dots indicate terms of higher order for £ - =). We recall that
1 -
E=0—py= Uy "N — B, = Uy net —B,

go that for large ¥ 1n the conversion to the variables and g of the
wouter’ expansion it follows from (2.1), (2.2)* (2.3) and (2.11) that the
outer solution contaims an "exponential part .

3. In the work of Van Dyke [1] the first two terms of the "outer" and
inner" expansions were Joined by using a general methcd of joining asympto-
tic expansions proposed by Lagerstrom [3]. We use below a method of joining
these expansions that arises from physical considerations for tge problem
under conslderation. ' We are henceforth interested only in the "power part
of the solution, and use the notation of [1]. The "outer" expansion for the
component v in the direction of increasing »n 1is taken ir the form

"

(s, n, R) ~ V1 (s,n) + eVa (s, n) + €Wy (s, n) +..., e = K /2 (3.1)
(r 1is the Reynolds number)

The other quantities are represented analogously. Upon substituting these
expansions Into the Navier-Stokes equations and the continuity equation, and
equating the coefficlents of like powers of ¢ , one obtains a system of
equations for the coefficients of the expansions that have the type of the
Euler equations. The viscous terms in these equations are known functions
of the coefflcients with smaller indices, and canbe treated as mass forces
in the Euler equations. For thls reason in determining the coefficients in
the expansion ?3.1) it 18 necessary to know only the behavior of the ¥, (s,n)
for n - 0. The expansion (3.1) 1s valid outside the boundary layer, but
each term of such an expansion can be continued analytically to the surface
of the body, n = O , and here it 1is necessary to substitute a corresponding
condition for it. We turn to the "inner" expansion; 1t is taken in the form

v (s, n, ) ~ evy (s, N) - 20y (s, N) -+ e%va (s, N) + . . ., N = ne’! 3.2)

The other quantities are represented analogously. We assume that the
regions of validity of (3.1) and (3.2) overlap %1%. For large ¥ but small
n all terms of (3.2) are of the same order, (0(1) , and it is necessary to
regroup them, transformlng to the variables n, ¢ and discarding exponen-
tial ter.s, after which the expanslon (3.1) should be obtained. (The expan-
sions (3.1} and (3.22 represent one and the same solution). Because the
coefficients of the "outer" expansion are obtailned from equations of Euler
type, there 1s no reason to suppose that Vk(s,n) ~ o a8 n - O ; conse-
quently one expects for v,(a,y as N - = the behavior

O (5, V) ~ ayg () N¥ 4 a, (YN*¥ 1+ ... + ayy (s) + [exp] (3.3)
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Here (exp] stands for exponential terms. This sort of behavior of the
Uy (a,¥) 18 confirmed by conslderation of the first two terms of (3.2) found

by V?n Dg'ke [1]. For large ¥ but small pn we obtain from (3.2}, (3.3)
and (3.

o0 o0 r an 7. .
o0 oo " [ve] " (o4
v(s, n, R) ~ 2 akvk (s, N) ~ 2 e¥ 2 ay NEL o 2 2 aklnk"'el~2 alonl +
k=1 k=1 1=o0 k=1 =0 =1
0 ! o2} ©0
+ 2 e 2 @yt~ 2 eV, (s, n) (3.4)
=1 k=l r=1

It follows from (3.4) that as n ~ O

Vl (39 n) and 0’ Vy- (31 n) > 8y, r1 (8) (3.5)

The solution of the problem is now carried out in the following order.
The first term of the expansion (3.1) is souent with the boundary condition
y,(8,0) = 0, (This is the solutlon of the problem of flow past the contour
of a stream of ideal fluid). Then the first term of the expansion (3,2) is
found. (This is the solution of boundary-layer theory). Then an la) 1s
determined (see (3.3)) and the problem for the second term of the expansion
(3.1) 1s solved with the boundary condition V,{g,0) = a,, (a) (see (3.5)).
After that the second term of the expansion (3.2) 1a found. (We do not
reproduce the matching conditions on the solution for ¥ - « ; see [1]).
Then gg (s) 18 found from (3.3) and the third term in (3.1) is determined,
whereupon the ghird term in {3.2) is determined, and so on. For the coeffi-
clents of the "inner" expansion it is necessary to display as many conditlons
for ¥ - » as are needed for thelr unique determination; for the pressure
P -and the component u 1in the directlon of increasing e , these conditions
are obtained from the "outer" expansion for small n after transformation
from n to N . We find, for example, the conditions for y . The "outer”
expansion for y has the form

u(s,n,R)~ U,y (s, n) + eUy (s, n) + 20U, (s, n) + ... (3.6)
Because

o0
U, (s, ) ~ }] Uy (5) nt for n =0
=0

we obtaln from (3.6), upon transforming from n to ¥ = ne-?

©0 o oo
u (s, n, R) ~ 2 Uy (s m) e — 2 Z Uppy, 1 (9) e H N

r=0 r=0l==0
00 k =)
~ 2 e 2 Ura, kr (9 N~ Z ¥ty (s, N) 3.7
k=0 r==0 k=0

From (3.7) we obtain for ¥ - =
k
Ursr (s) V) ~ 2 Ur+1, k-r (s) NFT 3.8)
r=0
In particular, it follows from (3.8) that for ¥ - =

uy (s, N) = Uy (9), ug (s, N) ~ Uyy () N + Usg (5)
ug (s, N) ~ Uz () N2 4 Ugy () N -+ Uyy (s) ete.

Analogous results hold for the pressure p .

The foregoing 1s confirmed by consideration of the first two terms of the
"inner" expansions obtained by Van Dyke [1].

We remark in conclusion that the "exponential” terms will play a role in
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the investigation of flow at moderate Reynolds number, which turns out to be
of the order of 10 for the flat plate [4].

The author thanks S.V. Fal'kovich for discussion of the questions con-
sidered.
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